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1. Context 6. r-ii Stars

Nuclear cosmochronometry: known half lives of radioactive isotopes to We use measurements of the following r-ii stars, further classified by their actinide abundances:
extract ages from stellar spectra.

Metal-poor stars ([Fe/H] <-2)* have pristine environments. r-ii stars are Actinide Boost Actinide Normal Actinide Deficient
metal-poor but show an abnormally large abundance of material log.(Th/Dv) > —0.9 0.9 > loo(Th/Dv) > —1.2 log.(Th/Dv) < —1.2
([Eu/Fe] >+1)** made via the rapid neutron capture process (r-process). (loge(Th/Dy) ) ( = log(Th/Dy) = ) (log(Th/Dy) )
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The r-process is sensitive to numerous nuclear uncertainties. It is thought to r-process path J2038-0023 ! CS22892-052 12l

occur in compact object mergers (COM) with at least one neutron star. CS29497-004 (10

\_ " Fe:H ratio at least 100 times smaller than what is observed in the Sun ** Eu:Fe ratio at least 10 times larger than what is observed in the Sun J L )
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2. Method 7. Lanthanide-Actinide Tension
By comparing the initial and final abundances of different isotopes with known half-lives, it is possible to calculate the Comparing the actinide (Th and U) abundances to the lanthanide (Eu) abundances yields a wide range of possible values,
amount of time elapsed. depending on the beta decay rates used as well as the fission yield. The width of a band in the following figure comes
from the comparison of the linear combinations of single-Ye trajectories.
Chronometers: the long-lived isotopes 23Th (t, ,,=14 Gyr) and 238U (t,,,=4.47 Gyr) plus the stable isotopes of Eu (Z=63). , ,
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We take the initial abundances in the equations above to be the final abundances produced in a COM. We calculate these E 2 o
final abundances by performing nucleosynthesis calculations with a variety of theoretical nuclear data sets and * Actinide production is more 2
astrophysical conditions. sensitive to the fission yield. |
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3. Beta Decay Rates N N i
The r-process is characterized by a neutron capture timescale that is short compared to 741 * Overall, all show smaller. actinide
. abundances (vs. lanthanides) =
the B-decay timescale. A+1 t5 40 40
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B-decay rates constrain: \ffz;} Some negative age predictions. 2 20 20
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We consider three sets of global theoretical B-decay rates in our nucleosynthesis calculations. The figure shows the 8. Results: Nuclear Agreement
ratio of each set of rates to those of [1]. In general, NES [2] tends to have slower rates than MLR [3], which in turn tends ‘ =0/50 * K&T
to have faster rates than MKT [4]. Nuclear decay equations make only one using 50/ using
NES/MLR03 MLR/MLRO3 MKT/MLRO03 assumption: the r-process material comes from a
#n 3 i single COM event. 24
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4.. Fission Yields 5. Initial Ye * MKT yields results for all stars; NES and MLR 6 . . . . . . . . .
When material with high mass number undergoes The success of the r-process is highly sensitive to the yield results for stars with normal or boosted E ) E S {8 0 E ) E S Q4
fission, it can deposit material in the rare earth region. initial neutron richness, given by Y, : actinide abundances. =1 S | L R =1 S N S =X
* NES and MLR simulations using K&T show A o E 0 % o) E %
We consider two possible fission outcomes: V. = "p significant overlap. ~ > ~ ~ ~ >
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 Symmetric (50/50) split: The nucleus fissions into
two equal daughter products: * More neutron-rich (low Y,) material = more r-process | / N\ [ N\
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